
10

IT Project Quality Management

CHAPTER OVERVIEW

The focus of this chapter will be on several concepts and philosophies of quality man-
agement. By learning about the people who founded the quality movement over the
last fifty years, we can better understand how to apply these philosophies and teach-
ings to develop a project quality management plan. After studying this chapter, you
should understand and be able to:
• Describe the Project Management Body of Knowledge (PMBOK) area called

project quality management (PQM) and how it supports quality planning, qual
ity assurance, quality control, and continuous improvement of the project's
products and supporting processes.

• Identify several quality gurus, or founders of the quality movement, and their
role in shaping quality philosophies worldwide.

• Describe some of the more common quality initiatives and management sys
tems that include ISO certification, Six Sigma, and the Capability Maturity
Model (CMM) for software engineering.

• Distinguish between validation and verification activities and how these activi
ties support IT project quality management.

• Describe the software engineering discipline called configuration management
and how it is used to manage the changes associated with all of the project's
deliverables and work products.

• Apply the quality concepts, methods, and tools introduced in this chapter to
develop a project quality plan.

GLOBAL TECHNOLOGY SOLUTIONS

It was mid-afternoon when Tim Williams walked into the GTS conference room.
Two of the Husky Air team members, Sitaraman and Yan, were already seated at the

217

218 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

conference table. Tim took his usual seat, and asked "So how did the demonstration
of the user interface go this morning?"

Sitaraman glanced at Yan and then focused his attention on Tim's question. He
replied, "Well, I guess we have some good news and some bad news. The good news is
that our client was pleased with the work we've completed so far. The bad news,
however, is that our prototype did not include several required management reports."

Yan looked at Tim and added, "It was a bit embarrassing because the CEO of the
company pointed out our omission. It appears that those reports were specifically
requested by him."

Tim looked a bit perplexed and asked, "So how did the client react?"
Sitaraman thought for a moment. "They were really expecting to see those reports,"

he replied, "but we promised that we would have them ready by next week. The CEO
wasn't too happy to hear that it would take another week before we could add the
reports and demonstrate the prototype again. However, everyone seemed pleased with
what we were able to show them so far, and I think that helped buy us some time."

Tim took out his PDA and studied the calendar for a few minutes. Looking up, he
asked, "So how will this impact our schedule?"

Yan opened the folder in front of her and found a copy of the project plan. She
answered, "I wondered the same thing myself, and so I took a look at the original baseline
project plan. The developers can begin working on what we've finished so far, but it
looks like Sitaraman and I will have to work a few late nights this week and probably the
weekend. That should get us back on track with minimal impact on the schedule."

Sitaraman sighed and said, "So much for going to the concert this evening. Do
you know of anyone who would be interested in two tickets?" That brought a chuckle
from the three team members.

Tim smiled and replied, "I'm glad to see that you both handled the situation fairly
well and that you thought of a way to keep the project on track, even if it means some
overtime for the two of you. However, I think we need to talk about why this problem
occurred in the first place and what we can do to reduce the likelihood of similar
problems happening again in the future."

Yan gave Tim's words a few seconds to sink in. "After our meeting with the client I
talked to a few of the other members of the team," she said. "It turns out that the
reports Husky Air's management wanted to see were defined in the requirements doc-
ument. Unfortunately, several people were working on the same document, and we
were given an earlier version of the document that didn't contain the entire specifica-
tions for the reports. As a result, we didn't even know the reports were part of the
requirements and, therefore, didn't include them in the user interface prototype. I
guess we should have checked with the other team members, but we were too busy
just trying to get the prototype to work properly."

Tim stood up and walked over to the white board. He then wrote Quality,
Verification/Validation, and Change Control on the board. Yan and Sitaraman gave
Tim their full attention as he explained, "It seems that having several people work on
the same documents, programs, or database files is a common problem. Often two
people work on the same document or file at the same time without knowledge of
what the other is doing. For example, let's say that person A is working on one section
of a document or file, while person B is working on another. If person A saves the
document or file to the server and then person B saves her or his document or file to the
server afterwards, the changes to Person A's document or file are lost."

"That appears to be exactly what happened to the requirements document we
used to develop the prototype!" exclaimed Yan.

GLOBAL TECHNOLOGY SOLUTIONS 219

"In fact," Sitaraman added, "Yan and I ran into a similar problem when we were
working on the prototype. We had several versions of a program that we were devel-
oping, but it became confusing as to which version was the latest."

Tim turned to the two team members and said, "As I said before, this seems to be
a common problem whenever several team members are working with the same files.
What we need is a tool and a method for checking documents out and back in so that
we reduce the likelihood of the errors we talked about."

Both Sitaraman and Yan agreed that this was a good idea. Sitaraman then inter-
jected, "Tim, you have 'Verification and Validation' written on the board. Can you
expand upon your idea?"

Tim glanced at the board and then turned his attention back to Sitaraman and said,
"Sure. We often think of testing as being one of the last activities in software devel-
opment. But catching problems and errors earlier in the project life cycle are easier
and less expensive to fix. Moreover, by the time those problems or errors reach the
client, it's too late and can be somewhat embarrassing, as the two of you found out
this morning. We need to ask two important questions with respect to each project
deliverable, Are we building the right product? And are we building the product the
right way? These two questions are the foundation for verification and validation and
should be part of an overall quality plan for the project."

Yan thought for a moment and said, "I remember learning about total quality
management when I was in school. From what I recall, a lot of this quality stuff
really focuses on the customer. But I think we need to rethink our idea of who
exactly is our customer."

Both Sitaraman and Tim looked confused. Sitaraman was the first to speak. "But
isn't Husky Air our customer?"

Yan knew she would have to explain. "Yes, they are, but they are our end cus-
tomer. The team members who carried out the requirements definition and wrote the
requirements document didn't realize that you and I were their customers because we
needed a complete and accurate set of requirements in order to develop the prototype.
In turn, the prototype that we develop will be handed off to several other team mem-
bers who will use it to develop the application system. Subsequently, they will be our
customers. I guess we can view the whole project as a customer chain that includes
all of the project stakeholders"

"That is a very interesting idea, Yan!" said Tim. "We can build the concepts of
quality, verification/validation, and change control into each of the project activities
as part of an overall quality plan." The three members of the team felt they had dis-
covered something important that should be documented and shared with the other
members of GTS.

Tim replaced the cap on the dry erase pen and said, "It looks like we all have our
work cut out for us this next week. While the two of you are busy working on the pro-
totype for your presentation next week, I'll be working late developing a project quality
management plan. By the way, do you know of anyone who would be interested in
two tickets to a hockey game?"

Things to Think About:

1. What role does quality play in the IT project methodology?
2. How does verification/validation and change control support quality in an

IT project?
3. Why should the project team focus on both internal and external customers?

220 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

INTRODUCTION

What is quality? Before answering that question, keep in mind that quality can mean
different things to different people. For example, if we were comparing the quality of
two cars—an expensive luxury car with leather seats and every possible option to a
lower-priced economy car that basically gets you where you want to go—many people
may be inclined to say that the more expensive car has higher quality. Although the
more expensive car has more features, you may not consider it a bargain if you have to
keep bringing it back to the shop for expensive repairs. The less-expensive car may start
looking much better to you if it were more dependable or met higher safety standards.
On the other hand, why do car manufacturers build different models of cars with
different price ranges? If everyone could afford luxury cars, then quality comparisons
among different manufacturers' cars would be much easier. Although you may have
your eyes on a luxury car, your current financial situation (and subsequent logic) may
be a constraint. You may have to buy a car you can afford.

Therefore, it is important not to define quality only in terms of features or func-
tionality. Other attributes such as dependability or safety may be just as important to
the customer. Similarly in software development, we can build systems that have a
great deal of functionality, but perform poorly. On the other hand, we can develop sys-
tems that have few features or limited functionality, but also fewer defects.

However, we still need a working definition of quality. The dictionary defines
quality as "an inherent or distinguishing characteristic; a property," or as something
"having a high degree of excellence." In business, quality has been defined in terms of
"fitness for use" and "conformance to requirements." "Fitness for use" concentrates
on delivering a system that meets the customer's needs, while "conformance to
requirements" centers more on meeting some predefined set of standards. Therefore,
quality depends on the needs or expectations of the customer. It is up to the project
manager and project team to accurately define those needs or expectations, while
allowing the customer to remain within his or her resource constraints.

Although the concepts and philosophies of quality have received a great deal of
attention over the last fifty years in the manufacturing and service sectors, many of
these same ideas have been integrated into a relatively new discipline or knowledge
area called project quality management (PQM). The Project Management Body of
Knowledge defines PQM as:

The processes required to ensure that the project will satisfy the
needs for which it was undertaken. It includes all activities of the
overall management function that determine the quality policy,
objectives, and responsibility and implements them by means of
quality planning, quality assurance, quality control, and quality
improvement, within the quality system. (95)

Moreover, PMBOK defines the major quality management processes as:

• Quality Planning—Determining which quality standards are important to
the project and deciding how these standards will be met.

• Quality Assurance—Evaluating overall project performance regularly to
ensure that the project team is meeting the specified quality standards.

• Quality Control—Monitoring the activities and results of the project to
ensure that the project complies with the quality standards. In addition, the
project organization as a whole should use this information to eliminate
causes of unsatisfactory performance and implement new processes and
techniques to improve project quality throughout the project organization.

INTRODUCTION 221

Therefore, PQM should focus on both the product and process of the project.
From our point of view, the project's most important product is the information system
solution that the project team must deliver. The system must be "fit for use" and
"conform to specified requirements" outlined in both the project's scope and require-
ments definition. More importantly, the IT product must add measurable value to the
sponsoring organization and meet the scope, schedule, and budget objectives. Quality
can, however, also be built into the project management and software development
processes. A process refers to the activities, methods, materials, and measurements
used to produce the product or service. We can also view these processes as part of a
quality chain where outputs of one process serve as inputs to other project manage-
ment processes (Besterfield, Besterfield-Michna et al. 1999).

By focusing on both the product and chain of project processes, the project organ-
ization can use its resources more efficiently and effectively, minimize errors, and
meet or exceed project stakeholder expectations. The cost of quality, however, can be
viewed as the cost of conforming to standards (i.e., building quality into the product
and processes) as well as the cost of not conforming to the standards (i.e., rework).
Substandard levels of quality can be viewed as waste, errors, or the failure to meet the
project sponsor's or client's needs, expectations, or system requirements
(Kloppenborg and Petrick 2002).

Failing to meet the quality requirements or standards can have negative conse-
quences for all project stakeholders and impact the other project objectives. More
specifically, adding additional work or repeating project activities will probably
extend the project schedule and expand the project budget. According to Barry
Boehm (Boehm 1981), a software defect that takes one hour to fix when the systems
requirements are being defined will end up taking one hundred hours to correct if not
discovered until the system is in production. Moreover, poor quality can be an embar-
rassment for the project manager, the project team, and the project organization. For
example, one of the most widely publicized software defect stories was the faulty
baggage-handling software at the Denver International Airport. Bugs in the software
delayed the opening of the airport from October 1993 to February 1995 at an esti-
mated cost of $1,000,000 a day! Newspaper accounts reported that bags were literally
chewed up and contents of bags were flying through the air (Williamson 1997).

The concepts and philosophies of quality management have received a great deal
of attention over the years. Although popularized by the Japanese, many organizations
in different countries have initiated quality improvement programs. Such programs
include ISO certification, six steps to Six Sigma initiatives, or awards such as the
Deming Prize or the Malcolm Baldridge National Quality Award. More recently, the
Capability Maturity Model (CMM) has provided a framework for software quality that
focuses on assessing the process maturity of software development within an organi-
zation. Based on writings and teachings of such quality gurus as Shewhart, Deming,
Juran, Ishikawa, and Crosby, the core values of these quality programs have a central
theme that includes a focus on the customer, incremental or continuous improvement,
problem detection and correction, measurement, and the notion that prevention is less
expensive than inspection. A commitment to these quality initiatives, however, often
requires a substantial cultural change throughout the organization.

In this chapter, you will learn how the concepts of quality management can be
applied to IT project management. We will also extend these concepts to include a
broader view of PQM in order to support the overall project goal and objectives. As
illustrated in Figure 10.1, PQM will not only include the concepts, teachings, tools, and
methods of quality management, but also validation/verification and change control.

Verification and validation (V&V) activities within PQM should be carried out
throughout the project life cycle. They require the project team to continually ask, Are

222 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

Figure 10.1 Project Quality Management

we building the right product? Are we building the product the right way? Therefore,
the project quality plan should not only focus on final testing of the system at the end of
the project life cycle, but also on all project deliverables. Finding and fixing problems
earlier in the project life cycle is less costly than having to deal with them in the later
stages of the project. Finding problems early not only leads to less rework later, but
also saves the project manager and project team from having to deal with embar-
rassing issues and problems once the project's product is in the hands of the project
sponsor or end-customer.

In addition, software development often requires a number of people to work on
multi-versions of documents, programs, and database files that are shared and distrib-
uted among various project stakeholders. Change control in the form of configuration
management, therefore, is a method of code and document management to track and
organize the different versions of documents and files. It keeps the project team more
focused and reduces the likelihood of errors.

In addition, knowledge management and the lessons learned can be implemented
as best practices and incorporated in projects throughout the organization. Such
changes lead to both continuous improvement and to a maturing of IT project man-
agement processes. Taken together, the concepts of quality management, V&V activ-
ities, change control, and knowledge management support the overall PQM plan. The
plan not only helps improve the overall quality of the project's product and processes,
but can also lead to a competitive advantage for the project organization because the
project will have a greater likelihood of achieving its expected organizational value
and support the scope, schedule, and budget objectives.

THE QUALITY MOVEMENT 223

Many experts believe that the quality of software is poor and
only getting worse. In fact, the IS manager may give quality
low priority because of budget cuts, increasing user demands,
competitive pressures, and fast-changing technology. Too
often the emphasis is on testing at the end of the development
process, while ignoring cost-effective ways to detect and pre-
vent defects earlier in the project. Although testing is impor-
tant, a true quality practitioner is also interested in process
improvement. An emphasis on process improvement is lack-
ing at many organizations that produce poor software. These
organizations tend to believe that the right people or right
technology will deliver high quality software, but it is tech-
nology, people, and process that bring success. The key,
therefore, is strong leadership and a commitment to quality
throughout the organization. Ignorance and schedule pressure
are enemies of quality. Many IS managers have been brain-
washed into believing that meeting deadlines is preferable to
getting it right the first time. Software defects are acceptable
because they can always be fixed later during maintenance.

Compounding the problem, IS managers often resist quality
improvement programs because they fear failure and see the
benefits as intangible. Many vendors' claims of silver bullet
tools confuse things even more. To overcome these problems,
IS managers should get formal training in quality methods
and hire one or two trained quality experts. Just having
trained quality experts on board, however, does not guarantee
success. These people must be given the respect and authority
to do their jobs effectively. IS managers should not be
intimidated by the effort to develop a comprehensive quality
improvement program. They should choose a problem area
that will result in the most benefit and be the most likely to
result in success. In the end, it is important that the quality
concepts be sold to management by showing them how quality
improvements provide direct savings to the bottom line.

SOURCE: Adapted from Gary H. Anthes, Quality?! What's That?,
Computerworld, October 13, 1997. http://www.computerworld.com
/news/1997/story/0,11280,9974,00.html

The remainder of this chapter will focus on introducing and delving into several
PQM concepts. It includes an overview of the quality movement and a brief history of
the people who provided the cornerstones for quality initiatives. It also provides an
overview of several quality systems. Finally, it gives a framework to support PQM
that integrates the concepts and philosophies of quality, as well as the concepts of
software testing, configuration management, and knowledge management.

THE QUALITY MOVEMENT

In this section, we will focus on the concepts associated with quality management, and
the history and people who helped shape this important area. This knowledge may help
us to better understand how to apply these concepts, ideas, and tools to IT projects.

Craftsmanship

Since the dawn of early humankind, quality was synonymous with craftsmanship. For
the earliest Homo sapiens, the quality of the tools and weapons often determined
one's survival. Parts could be interchanged to a limited degree, but people generally
built things their own way and the products of their labor were highly customized.

This idea was formalized in the Middle Ages when the quality of products and
the process to produce those products were held in high esteem. Guilds were created
by merchants and artisans for each trade or craft. These unions of the past regulated
who could sell goods or practice a trade in a particular town. Members of a guild
charged similar prices for products of similar quality and ensured that there were
never more craftsmen of a particular trade in a town than could make a decent living. If
a worker became ill or too old to work, the guild supported him and his family.

224 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

Guilds also ensured the quality of a particular good by regulating the forms of
labor. Members of the guild were classified as masters, apprentices, and journeymen.
The masters owned the shops and trained the apprentices. An apprentice was bound
to a master craftsman, but conditions of control were set by the guild. Training for
apprentices required several years, and those who wanted to become master craftsmen
had to demonstrate the quality of their work. The number of masters was also limited
by the guild. Journeymen were those who had completed their apprenticeship training
but were waiting to become masters.

The Industrial Revolution

Eli Whitney (1765-1825) is widely remembered as the inventor of the cotton gin—a
machine that could clean the seed from cotton. Whitney's greatest contribution, how-
ever, may be the concept of mass producing interchangeable parts. In 1798, Whitney
received a contract for $134,000 from the U. S. government to deliver ten thousand
rifles within two years. At that time, guns were crafted by gunsmiths, and each gun-
smith crafted the pieces differently from other gunsmiths. A lack of gunsmiths and
the time required to build a rifle made it impossible to meet the terms of the contract.
Time was critical because the United States was anticipating a war with France.

Faced with this problem, Whitney came up with the idea of a new production
method in which individual machines could produce each part. Men could then be
trained to operate the machines, and the guns could be assembled with parts that met
certain tolerance limits. The men operating the machines would, therefore, not be
required to have the highly specialized skills of a gunsmith. Whitney called this new
production system and division of labor a manufactory.

Fortunately, the war between the United States and France never happened. It took
Whitney almost a year to develop the manufactory, and then the weather, yellow fever
epidemics, delays in obtaining raw materials, and ongoing cotton gin patent lawsuits
delayed the implementation of the new production system (Woodall, Rebuck et al. 1997).
However, Whitney was able to convince President John Adams of the importance of this
innovative approach and subsequently obtained the government's investment and sup-
port. Although it took more than ten years to deliver the last rifle, Whitney demonstrated
the feasibility of his system and established the seed for the modern assembly line.

Frederic W. Taylor (1856-1915)

As a young man, Frederic W. Taylor worked as an apprentice at the Enterprise Hydraulics
Shop. Supposedly, he was told by the older workers how much he should produce each
day—no more, no less (Woodall, Rebuck et al. 1997). The workers were paid on a piece
rate basis, and if they worked harder or smarter, management would change the produc-
tion rates and the amount a worker would be paid. These arbitrary rates, or rules of
thumb, restricted output, and workers produced well below their potential.

Later, as an engineer, Taylor became one of the first to systematically study the
relationships between people and tasks. He believed that the production process could
become more efficient by increasing the specialization and the division of labor. Using
an approach called scientific management, Taylor believed that a task could be broken
down into smaller tasks and studied to identify the best and most efficient way of doing
each subtask. In turn, a supervisor could then teach the worker and ensure that the
worker did only those actions essential for completing the tasks, in order to remove
human variability or errors. At that time, most workers in U. S. factories were immi-
grants, and language barriers created communication problems among the workers,

THE QUALITY MOVEMENT 225

SIXTY-THREE THOUSAND KNOWN BUGS IN WINDOWS 2000?

In February 2000, a Microsoft Corp. memo caused quite a
stir when it was leaked to the public. The memo was written
by Marc Lucovsky, a Microsoft development manager, and
an excerpt from that memo reads:

Our customers do not want us to sell them prod-
ucts with over sixty-three thousand potential
defects. They want those defects corrected. How
many of you would spend $500 on a piece of soft-
ware with over sixty-three thousand potential
known defects?

Although it is virtually impossible to produce a piece of
software of any size and complexity bug free, Microsoft
received its share of bad press, especially as the leak coin-
cided with a proposal in the State of Virginia's General
Assembly to pass the Uniform Computer Information
Transactions Act (UCITA). The Microsoft memo served as
an example of how this act could benefit software vendors
to the detriment of the customer. Many consumer and pro-
fessional organizations opposed this legislation on the
grounds that (1) a software vendor could legally disclaim
any obligation to sell products that work, (2) in the event of a
dispute, a software vendor could disable a customer's
software remotely—even if it totally disrupted the cus-
tomer's business, (3) security experts would be prohibited
from reverse engineering software in order to examine it
for defects and viruses, and (4) a software vendor could

legally stop a user from making public comments on the
quality or performance of a product.

Microsoft insisted that the memo was intended to moti-
vate the Windows development team after the source code
was scanned using a tool called Prefix. According to Ken
White, director of Windows marketing at Microsoft, Prefix
flagged code that could be made more efficient in the next
release, detected false positives, and analyzed 10 million
lines of test code that was not even part of the release.
Moreover, White used an analogy of running a
grammar-check tool on F. Scott Fitzgerald's classic The
Great Gatsby—although the tool may highlight unfamiliar
words, it doesn't change the content of the novel. With over
750,000 beta testers and security analysts testing Windows
2000, White insisted that the product was "rock solid" and that
"the claims are taken out of context and completely
inaccurate."

SOURCE: Adapted from Ann Harrison, Microsoft Disputes Reports of
63,000 Bugs in Windows 2000, Computerworld, February 16, 2000,
http://www.computerworld.eom/news/2000/story/0,11280,43022,00
.html; Frankly Speaking, Win 2K or Win 63K, Computerworld,
February 21, 2000, http://www.computerworld.com/news/2000/story
/0,11280 ,41418.00.html; Ann Harrison and Dominique Deckmyn, Win
2K Bug Memo Causes Brief Uproar, Computerworld, February 21,
2000, http://www.computerworld.eom/news/2000/story/0,11280,41419
,00.html; Dan Gillmor, UCITA Is Going to Hurt You If You Don't Watch
Out, Computerworld, July 26, 1999, http://www.computerworld.com
/news/1999/story/0,11280,36469,00.html.

their supervisors, and even with many coworkers. The use of a stopwatch as a basis for
time-motion studies provided a more scientific approach. Workers could produce at
their full potential, and arbitrary rates set by management would be removed. To be
successful, Taylor also believed that the scientific management approach would
require a spirit of cooperation between the workers and management.

Although the scientific management approach became quite popular, it was not
without controversy. Many so-called efficiency experts ignored the human factors and
tended to believe that profits could be increased by speeding up the workers.
Dehumanizing the workers led to conflict between labor and management that even-
tually laid the foundation for labor unions. Just three years before Taylor died, he
acknowledged that the motivation of a person can affect output more than just engi-
neered improvements (Woodall, Rebuck et al. 1997).

Walter A. Shewhart (1891-1967)

In 1918, Walter Shewhart went to work at the Western Electric Company, a manufac-
turer of telephone equipment for Bell Telephone. At the time, engineers were working
to improve the reliability of telephone equipment because it was expensive to repair
amplifiers and other equipment after they were buried underground. Shewhart believed
that efforts to control production processes were impeded by a lack of information.

226 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

Shewhart also believed that statistical theory could be used to help engineers and
management control variation of processes. He also reasoned that the use of tolerance
limits for judging quality was short-sighted because it provided a method of judging
quality for products only after they were produced (Woodall, Rebuck et al. 1997). In
1924, Shewhart introduced the control chart as a tool to better understand variation
and to allow management to shift its focus away from inspection and more toward the
prevention of problems and the improvement of processes.

A control chart provides a picture of how a particular process is behaving over
time. All control charts have a center line and control limits on either side of the center
line. The center line represents the observed average, while the control limits on either
side provide a measure of variability. In general, control limits are set at ±3cr (i.e., ±3
sigma) or ±3s, where a represents the population standard deviation and s represents
the sample standard deviation. If a process is normally distributed, control limits based
on three standard deviations provides .001 probability limits.

Variation attributed to common causes is considered normal variation and exists
as a result of normal interactions among the various components of the process—i.e.,
chance causes. These components include people, machines, material, environment,
and methods. As a result, common cause variation will remain stable and exhibit a
consistent pattern over time. This type of variation will be random and vary within
predictable bounds.
If chance causes are only present, the probability of an observation falling above the
upper control limit would be one out of a thousand, and the probability of an observation
falling below the lower control limit would be one out of a thousand as well. Since the
probability is so small that an observation would fall outside either of the control limits by
chance, we may assume that any observation that does fall outside of the control limits
could be attributed to an assignable cause. Figure 10.2 provides an example of a control
chart where a process is said to be stable or in statistical control. Variations attributed

to assignable causes can create significant
changes in the variation patterns because
they are due to phenomenon not considered
part of the normal process. An example of
assignable cause variation can be seen by the
pattern in Figure 10.3. This type of variation
can arise because of changes in raw
materials, poorly trained people, changes
to the work environment, machine failures,
inadequate methods, and so forth (Florae,
Park et al. 1997). Therefore, if all
assignable causes are removed, the
process will be stable because only
chance factors remain.

To detect or test whether a process is not
in a state of statistical control, one can
examine the control chart for patterns that
suggest nonrandom behavior. Florae and
his colleagues suggest several tests that are
useful for detecting these patterns:

Figure 10.2 Control Chart for a Process within Statistical Control

THE QUALITY MOVEMENT 227

W. Edwards Deming (1900-1993)

While working at the Western Electric Hawthorne plant in Chicago, Illinois, during
the 1920s, Deming became aware of the extensive division of labor. Management
tended to treat the workers as just another cog in the machinery. Moreover, the workers
were not directly responsible for the quality of the products they produced. Final
inspection was used as a means to control quality and reductions in the per piece rate
reflected scrap and rework.

Deming met Shewhart while working at Bell Laboratories in New Jersey in the
1930s and became interested in Shewhart's application of statistical theory. Deming
realized that costly inspections could be eliminated if workers were properly trained
and empowered to monitor and control the quality of the items they produced.

228 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

FOURTEEN POINTS FOR QUALITY

1. Create constancy of purpose toward improvement of
products and services, with the aim to become com
petitive, and to stay in business, and to provide jobs.

2. Adopt the new philosophy. We are in a new eco
nomic arena. Western management must awaken to
the challenge, must learn responsibilities, and take
on leadership for change.

3. Cease dependencies on inspection to achieve
quality. Eliminate the need for inspection on a
mass basis by building quality into the product in
the first place.

4. End the practice of awarding business on the basis
of price tag. Instead, minimize total cost. Move
toward a single supplier for any one item, on a long-
term relationship of loyalty and trust.

5. Improve constantly and forever the system of pro
duction and service—to improve quality and pro
ductivity, and thus constantly decrease costs.

6. Institute training on the job.

7. Institute leadership.
8. Drive out fear, so that everyone may work effec

tively for the company.
9. Break down barriers between departments.

10. Eliminate slogans, exhortations, and targets for the
workforce asking for zero defects and new levels of
productivity.

11. (a) Eliminate work standards (quotas) on the fac
tory floor. Substitute leadership, (b) Eliminate man
agement by objective. Eliminate management by
numbers, numerical goals. Substitute leadership.

12. Create pride in the job being done.
13. Institute a vigorous program of education and self-

improvement.
14. Put everybody in the company to work to accom

plish the transformation.

SOURCE: W. Edwards Deming, Out of the Crisis, Cambridge, MA: The
MIT Press, 1982.

Deming and his teachings were relatively unnoticed in the United States. Soon
after World War II, Japan was a country faced with the challenge of rebuilding itself
after devastation and military defeat. Moreover, Japan had few natural resources so
the export of manufactured goods was essential. Unfortunately, the goods that it pro-
duced were considered inferior in many world markets.

To help Japan rebuild, a group called the Union of Japanese Scientists and
Engineers (JUSE) was formed to work with U. S. and allied experts to improve the
quality of the products Japan produced. As part of this effort, in the 1950s Deming
was invited to provide a series of day-long lectures to Japanese managers. The
focus of these lectures was statistical control and quality. The Japanese embraced
these principles, and the quality movement acquired a strong foothold in Japan. In
tribute to Deming, the Japanese even named their most prestigious quality award the
Deming Prize.

Until the 1970s, Deming was virtually unknown in the West. In 1980, an NBC
documentary entitled "If Japan Can, Why Can't We" introduced him and his ideas to
his own country and the rest of the world. Many of Deming's philosophies and teach-
ings are summarized in his famous fourteen points for quality that are outlined and
discussed in his book Out of the Crisis (Deming 1982).

Joseph Juran (1904-)

Joseph Juran's philosophies and teachings have also had an important and significant
impact on many organizations worldwide. Like Deming, Juran started out as an engineer
in the 1920s. In 1951 he published the Quality Control Handbook, which viewed quality
as "fitness for use" as perceived by the customer. Like Deming, Juran was invited to
Japan by JUSE in the early 1950s to conduct seminars and lectures on quality.

THE QUALITY MOVEMENT 229

Juran's message on quality focuses on his belief that quality does not happen by
accident—it must be planned. In addition, Juran distinguishes external customers
from internal customers. Juran's view of quality consists of a quality trilogy—quality
planning, quality control, and quality improvement—that can be combined with the
steps that make up Juran's Quality Planning Road Map.

Quality Planning
1. Identify who are the customers.
2. Determine the needs of those customers.
3. Translate those needs into our language.
4. Develop a product that can respond to those needs.
5. Optimize the product features so as to meet our needs as well as cus

tomer needs.

Quality Improvement
6. Develop a process that is able to produce the product.
7. Optimize the process.

Quality Control
8. Prove that the process can produce the product under operating conditions.
9. Transfer the process to Operations.

Kaoru Ishikawa (1915-)

Kaoru Ishikawa studied under Deming and believes that quality improvement is a
continuous process that depends heavily on all levels of the organization—from top
management down to every worker performing the work. In Japan this belief led to
the use of quality circles that engaged all members of the organization. In addition to
the use of statistical methods for quality control, Ishikawa advocated the use of
easy-to-use analytical tools that included cause-and-effect diagrams (called the
Ishikawa diagram, or fishbone diagram, because it resembles the skeleton of a fish),
the Pareto Chart, and flow charts.

Although the Ishikawa, or fishbone, diagram was introduced in an earlier chapter,
it can be used in a variety of situations to help understand various relationships
between causes and effects. An example of an Ishikawa diagram is illustrated in
Figure 10.4. The effect is the rightmost box and represents the problem or character-
istic that requires improvement. A project team could begin by identifying the major
causes, such as people, materials, management, equipment, measurements, and envi-
ronment, that may influence the problem or quality characteristic in question. Each
major cause can then be subdivided in potential sub-causes. For example, causes
associated with people may be lack of training or responsibility in identifying and cor-
recting a particular problem. An Ishikawa diagram can be best developed by
brain-storming or by using a learning cycle approach. Once the diagram is complete,
the project team can investigate the possible causes and recommend solutions to
correct the problems and improve the process.

Another useful tool is a Pareto diagram, which was developed by Alfred Pareto
(1848-1923). Pareto studied the distribution of wealth in Europe and found that about
80 percent of the wealth was owned by 20 percent of the population. This idea has
held in many different settings and has become known as the 80/20 rule. For exam-
ple, 80 percent of the problems can be attributed to 20 percent of the causes.

230 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

Figure 10.4 Ishikawa, or Fishbone, Diagram

Pareto diagrams can be constructed by (Besterfield, Besterfield-Michna et al. 1999):

1. Determining how the data will be classified. It can be done by the nature of
the problem, the cause, non-conformity, or defect or bug.

2. Determining whether frequency, dollar amount, or both should be used to
rank the classifications.

3. Collecting the data for an appropriate time period.

4. Summarizing the data by rank order of the classifications from largest to
smallest, from left to right.

Pareto diagrams are useful for identifying and investigating the most important
problems by ranking problems in descending order from left to right. For example,
let's say that we have tracked all the calls to a call center over a period of one week. If
we were to classify the different types of problems and graph the frequency of each type
of call, we would end up with a chart similar to Figure 10.5.

As you can see, the most frequent type of problem had to do with documentation
questions. In terms of quality improvement, it may suggest that the user documentation
needs to be updated.

In addition, flow charts can be useful for documenting a specific process in order
to understand how products or services move through various functions or operations.
A flow chart can help visualize a particular process and identify potential problems or
bottlenecks. Standardized symbols can be used, but are not necessary. It is more
important to be able to identify problems or bottlenecks, reduce complexity, and
determine who is the next customer (Besterfield, Besterfield-Michna et al. 1999).

QUALITY SYSTEMS 231

Figure 10.6, for example, documents the project
management process for verifying a project's
scope. The original customer who initiates the
original project request might be the project's
client or sponsor. The customer who receives the
output of the scope verification process might be
a specific member of the project team.

Phillip Crosby (1926-2001)

Like F.W. Taylor, Philip Crosby developed many
of his ideas from his experiences working on an
assembly line. After serving in the Navy during
the Korean War, he worked his way up in a
variety of quality control positions until he
held the position of corporate vice president and
director of quality for ITT. In 1979, he published
a best-selling book, Quality is Free, and
eventually left ITT to start his own consulting
firm that focused on teaching other

organizations how to manage quality.
Crosby defined quality as conformance to requirements based on the customer's

needs and advocated a top-down approach to quality in which it is management's
responsibility to set a quality example for workers to follow. Crosby also advocated
"doing it right the first time" and "zero defects", which translate into the notions that
quality is free and that non-conformance costs organizations money.

| QUALITY SYSTEMS

Although guilds were the first organizations to ensure quality standards, there are a number
of different organizations and approaches for defining and implementing quality standards
in organizations. Standards are documented agreements, protocols, or rules that outline
the technical specifications or criteria to be used to ensure that products, services,
processes, and materials meet their intended purpose. Standards also provide a basis for
measurement because they provide criterion, or basis, for comparison.

International Organization for Standardization (ISO)

One of the most widely known standards organizations is the International Organizations
for Standardization (ISO). Although you may think the acronym should be IOS, the name
for the organization is ISO and was derived from the Greek word isos, which means
equal. The name avoids having different acronyms that would result from International
Organization for Standardization being translated in different languages.

ISO was officially formed in 1947 after delegates from twenty-five countries met in
London the previous year with the intention of creating an international organization
whose mission would be "to facilitate the international coordination and unification of
industrial standards." ISO is not owned or managed by any national government, and

232 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

today it has over 130 member organizations,
with one member per country. Each
participating member has one vote, regardless
of its country's size or economic strength, to
ensure that each member country's interests are
represented fairly. As a result, each country has
an equal say with respect to the standards that
are adopted and published. Each member is then
responsible for informing other interested
organizations in his or her country of any
relevant international standard opportunities
and initiatives.

International standards are established for
many technologies and industries. Countries
that do business with each other need to have
an agreed upon set of standards to make the
process of trade more logical and because a
lack of standardization can create trade barri-
ers. For example, credit cards adhere to a
standard size and thickness so that they can
be used worldwide.

Although most of the ISO standards are
specific to a particular product, material, or
process, a set of standards make up the ISO
9000 and ISO 14000 families. These are
known as "generic management system stan-
dards" in which the same standards can be
applied to any size or type of organization in
any industry. The term management system
refers to the processes and activities that the
organization performs. ISO 9000 was
originally initiated in 1987 and focuses on
quality management with respect to improved
customer satisfaction and the continuous
improvement of an organization's
performance and processes. On the other
hand, standards that fall under the ISO 14000
came about in 1997 and are concerned
primarily with environmental
management—that is, how an organization can
minimize any harmful effects on the
environment that may be caused by its

activities and operations.
The ISO 9000 standards were revised in 2000 (and are now called ISO

9000:2000) and focus on eight quality management principles that provide a frame-
work for organizations:

1. Customer Focus—The customer is key for all organizations. Therefore,
organizations should strive to meet and exceed the current and future needs of
their customers.

QUALITY SYSTEMS 233

2. Leadership—Strong leaders create a sense of purpose and direction for an
organization by establishing and communicating a vision and mission for
the organization. In addition, leaders inspire and provide their people with
adequate resources, training, and empowerment to act within a set of well-
defined responsibilities.

3. Involvement of People—To be successful, an organization must involve
people at all levels so that individuals accept ownership for problems and
the responsibility for solving them. This involvement requires the sharing
of knowledge and experiences freely, while supporting and encouraging the
open discussion of problems and issues.

4. Process Approach—In order to achieve a desired result, activities and
related resources should be managed as a process, which allows for lower
costs, improved cycle times, predictable results, and a focused approach for
identifying opportunities for improvement.

5. System Approach to Management—To achieve its objectives, an organiza
tion must identify, understand, and manage its interrelated processes as a
system. This system provides a more structured and integrated approach
that recognizes the interdependencies among processes and reduces cross-
functional barriers.

6. Continual Improvement—Continuous improvement of the organization's
products, processes, and systems should be a permanent objective. It should
entail an organizationwide approach with established goals to guide and
measure progress.

7. Factual Approach to Decision Making—Decision making should be based
on data and facts. Data and information should be accurate and reliable,
and should be analyzed using valid methods. However, informed decision
making should be balanced between analysis based on facts or data and
experience and intuition.

8. Mutually beneficial supplier relationships—An interdependent relation
ship exists between an organization and its suppliers. This relationship
can be mutually beneficial if it increases the ability to create value for
both parties. This value can support a long-term relationship that allows
for pooling expertise and resources, while improving flexibility and
speed in jointly responding to changing markets or customer needs. This
relationship requires trust, open communication, and the sharing of
information that will support joint activities between an organization and
its suppliers.

To show that a product, service, or system meets the relevant standards, an organ-
ization may receive a certificate as proof. For example, many organizations have been
issued ISO 9000 certificates as testaments that they have quality management systems
in place and that their processes conform to the ISO 9000 standards. Keep in mind
that these standards focus on processes not products. An organization can be certified
in one of three quality systems under ISO 9000:

• ISO 9001—For organizations whose business processes range from design
through development, as well as production, installation, and service. ISO
9001 contains twenty standards, or requirements, that must be met for a
quality system to be in compliance. Although ISO 9001 can be applied to
all engineering disciplines, it is the one most relevant to software
development.

234 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

• ISO 9002—For organizations that do not design and develop products.
With the exception of design control requirements, the requirements are
similar to ISO 9001.

• ISO 9003—For organizations whose business processes do not include
design control, process control, purchasing, or service. The focus is on
inspection and testing of final products and services in order to meet speci
fied requirements.

If an organization decides that it would like to be ISO certified as meeting the
ISO standards, it usually begins by studying the ISO guidelines and requirements. The
organization then conducts an internal audit to make sure that every ISO requirement is
met. After deficiencies or gaps are identified and corrected, the organization then has
a third party called a registrar audit its quality management system. If the registrar
finds that the organization meets the specified ISO standards and requirements, it will
issue a certificate as a testament that the organization's products and services are
managed and controlled by a quality management system that meets the requirements
of ISO 9000. ISO does not conduct the audits or issue certificates. In addition, an
organization does not have to have a formal registration or certificate to be in compli-
ance with the ISO standards; however, customers may be more likely to believe that
an organization has a quality system if an independent third party attests to it.

TickIT

The TickIT initiative began in 1991 following a report on software quality published by
the British Department of Trade and Industry. The report reviewed the state of software
quality and suggested that many software organizations were reluctant to adopt the ISO
9000 standards because they believed them to be too general or difficult to interpret.

The British government then asked the British Computer Society (BCS) to take
on a project called TickIT, which would provide a method for registering software
development systems under the ISO 9000 standards. TickIT guides a company
through certification of software quality under the ISO 9001 framework. This certifi-
cation is applicable to all types of information systems that include software develop-
ment processes—from software houses that produce software as an end product or
service to in-house software development supported by an internal IS function.

TickIT certification relates directly to ISO 9001:2000. More than 1,400 ISO
9001/TickIT certificates have been issued worldwide by twelve certification bodies
accredited in Britain and Sweden. Certification is conducted by an independent exter-
nal auditor who has been specially trained under the International Register of
Certified Auditors (IRCO), which is supported by the British Computer Society. After
being successfully audited by a TickIT certified auditor, an organization receives a
certificate that it is in compliance with ISO 9001:2000 and it is endorsed with a
TickIT logo. Subsequently, TickIT gives software developers an accredited quality
certification specialized to software organizations and, hopefully, increases the confi-
dence of customers and suppliers.

The term Six Sigma was originated by Motorola (Schaumburg, Illinois) in the
mid-1980s. The concept of Six Sigma came about as a result of competitive pressures
by foreign firms that were able to produce higher quality products at a lower cost than
Motorola. Even Motorola's own management at that time admitted that "our quality
stinks" (Pyzdek 1999).

QUALITY SYSTEMS 235

Sigma (a) is a Greek letter and in statistics represents the standard deviation to
measure variability from the mean or average. In organizations, variation is often the
cause of defects or out-of-control processes and translates into products or services
that do not meet customer needs or expectations. If a manufacturing process follows a
normal distribution, then the mean or average and the standard deviation can be used
to provide probabilities for how the process can or should perform.

Six Sigma focuses on defects per opportunities (DPO) as a basis for measuring
the quality of a process rather than products it produces, because products may vary in
complexity. A defect may be thought of as anything that results in customer dissat-
isfaction. The sigma value, therefore, tells us how often defects are likely to occur.
The higher the value of sigma, the lower the probability of a defect occurring. As
illustrated in Table 10.1, a value of six sigma indicates that there will only be 3.4
defects per million, while three sigma quality translates to 66,807 defects per million.
Table 10.2 provides several real-world examples that compare the differences
between three sigma and six sigma quality.

Therefore, Six Sigma can be viewed as a quality objective whereby customer sat-
isfaction will increase as a result of reducing defects; however, it is also a
business-driven approach for improving processes, reducing costs, and increasing
profits. The key steps in the Six Sigma improvement framework are the D-M-A-I-C
cycle:

• Define—The first step is to define customer satisfaction goals and sub-
goals—for example, reduce cycle time, costs, or defects. These goals then
provide a baseline or benchmark for the process improvement.

• Measure—The Six Sigma team is responsible for identifying a set of rele
vant metrics.

• Analyze—With data in hand, the team can analyze the data for trends, pat
terns, or relationships. Statistical analysis allows for testing hypotheses,
modeling, or conducting experiments.

• Improve—Based on solid evidence, improvements can be proposed and
implemented. The Measure - Analyze - Improve steps are generally itera
tive to achieve target levels of performance.

• Control—Once target levels of performance are achieved, control methods
and tools are put into place in order to maintain performance.

To carry out a Six Sigma program in an organization, a significant investment in
training and infrastructure may be required. Motorola adopted the following martial
arts terminology to describe these various roles and responsibilities (Pyzdek 1999):

Table 10.1 Sigma and Defects
per Million Five short or long landings at any

major airport
Approximately 1,350 poorly
performed surgical operations in
one week
Over 40,500 newborn babies
dropped by doctors or nurses
each year
Drinking water unsafe to drink
for about 2 hours each month

One short or long landing in 10
years at all airports in the U.S.
One incorrect surgical operation
in 20 years

Three newborn babies dropped
by doctors or nurses in 100 years

Water unsafe to drink for one
second every six years

236 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

• Master Black Belts—Master black belts are people within the organization
who have the highest level of technical and organizational experience and
expertise. Master black belts train black belts and, therefore, must know
everything a black belt knows. Subsequently, a maser black belt must have
technical competence, a solid foundation in statistical methods and tools,
and the ability to teach and communicate.

• Black Belts—Although black belts may come from various disciplines, they
should be technically competent and held in high esteem by their peers.
Black belts are actively involved in the Six Sigma change process.

• Green Belts—Green belts are Six Sigma team leaders or project managers.
Black belts generally help green belts choose their projects, attend training
with them, and then assist them with their projects once the project begins.

• Champions—Many organizations have added the role of a Six Sigma cham
pion. Champions are leaders who are committed to the success of the Six
Sigma project and can ensure that barriers to the Six Sigma project are
removed. Therefore, a champion is usually a high-level manager who can
remove obstacles that may involve funding, support, bureaucracy, or other
issues that black belts are unable to solve on their own

Although the concept of Six Sigma was initially used in a manufacturing envi-
ronment, many of the techniques can be applied directly to software projects (Siviy
2001). The usefulness of Six Sigma lies in the conscious and methodical way of
achieving customer satisfaction through the improvement of current processes and
products and their design.

The Capability Maturity Model (CMM)

In 1986, the Software Engineering Institute (SEI), a federally funded research develop-
ment center at Carnegie Mellon University, set out to help organizations improve their
software development processes. With the help of the Mitre Corporation and Watts
Humphrey, a framework was developed to assess and evaluate the capability of software
processes and their maturity, and the work of the SEI evolved into the Capability
Maturity Model (CMM) (Humphrey 1988). The CMM provides a set of recommended
practices for a set of key process areas specific to software development. The objective
of the CMM is to provide guidance as to how an organization can best control its
processes for developing and maintaining software. In addition, the CMM provides a
path for helping organizations evolve their current software processes toward software
engineering and management excellence (Paulk, Curtis et al. 1993).

To understand how the CMM may support an organization, several concepts must
first be defined:

• Software Process—A set of activities, methods, or practices and transfor
mations used by people to develop and maintain software and the deliver-
ables associated with software projects. Included are such things as project
plans, design documents, code, test cases, user manuals, and so forth.

• Software Process Capability—The expected results that can be achieved by
following a particular software process. More specifically, the capability of
an organization's software processes provides a way of predicting the out
comes that can be expected if the same software processes are used from
one software project to the next.

• Software Process Performance—The actual results that are achieved by
following a particular software process. Therefore, the actual results

QUALITY SYSTEMS 237

achieved through software process performance can be compared to the
expected results achieved through software process capability.

• Software Process Maturity—The extent to which a particular software process
is explicitly and consistently defined, managed, measured, controlled, and
effectively used throughout the organization.

One of the keys to the CMM is using the idea of software process maturity to
describe the difference between immature and mature software organizations. In an
immature software organization, software processes are improvised or developed ad hoc.
For example, a software project team may be faced with the task of defining user require-
ments. When it comes time to complete this task, the various members of the team may
have different ideas concerning how to accomplish it. Several of the members may
approach the task differently and, subsequently achieve different results. Even if a
well-defined process that specifies the steps, tools, resources, and deliverables required is
in place, the team may not follow the specified process very closely or at all.

The immature software organization is characterized as being reactive; the project
manager and project team spend a great deal of their time reacting to crises or find
themselves in a perpetual state of fire fighting. Schedules and budgets are usually
exceeded. As a result, the quality and functionality of the software system and the
associated project deliverables are often compromised. Project success is determined
largely by who is (or who is not) part of the project team. In addition, immature soft-
ware organizations generally do not have a way of judging or predicting quality. Since
these organizations operate in a perpetual crisis mode, there never seems to be enough
time to address problem issues or improve the current processes.

Mature software organizations, on the other hand, provide a stark contrast to the
immature software organization. More specifically, software processes and the roles
of individuals are defined explicitly and communicated throughout the organization.
The software processes are consistent throughout the organization and continually
improved based on experimentation or experiences. The quality of each software
process is monitored so that the products and processes are predictable across different
projects. Budgets and schedules are based on past projects so they are more realistic
and the project goals and objectives are more likely to be achieved. Mature software
organizations are proactive and they are able to follow a set of disciplined processes
throughout the software project.

The CMM defines five levels of process maturity, each requiring many small
steps as a path of incremental and continuous process improvement. These stages are
based on many of the quality concepts and philosophies of Shewhart, Deming, Juran,
and Crosby (Paulk, Curtis et al. 1993). Figure 10.7 illustrates the CMM framework
for software process maturity. These levels allow an organization to assess its current
level of software process maturity and then help it prioritize the improvement efforts it
needs to reach the next higher level (Caputo 1998).

Maturity levels provide a well-defined, evolutionary path for achieving a mature
software process organization. With the exception of Level 1, each maturity level
encompasses several key process areas that an organization must have in place in
order to achieve a particular level of maturity. There are five levels of software
process maturity.

Level 1: Initial The initial level generally provides a starting point for many software
organizations. This level is characterized by an immature software organization in which
the software process is ad hoc and often reactive to crises. Few, if any, processes for
developing and maintaining software are defined. The Level 1 software organization
does not have a stable environment for software projects, and success of a project rests

238 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

Figure 10.7 Levels of Software Process Maturity

largely with the people on the project and not the processes that they follow. As a result,
success is difficult to repeat across different projects throughout the organization.

Key Process Areas

• No key process areas are in place.

Level 2: Repeatable At this level, basic policies, processes, and controls for managing
a software project are in place. Project schedules and budgets are more realistic
because planning and managing new projects is based upon past experiences with
similar projects. Although software processes between projects may be different at
this level, the process capability of Level 2 organizations is more disciplined because
software processes are more documented, enforced, and improving. As a result, many
previous project successes can be repeated by other project teams on other projects.

Key Process Areas

• Software Configuration Management—Supports the controlling and man
aging of changes to the various project deliverables and software products
throughout the project and software life cycles.

• Software Quality Assurance—Provides project stakeholders with an
understanding of the processes and standards used to support the project
quality plan.

QUALITY SYSTEMS 239

• Software Subcontract Management—Supports the selection and manage
ment of qualified software subcontractors.

• Software Project Tracking and Oversight—Ensures that adequate controls
are in place to oversee and manage the software project so that effective
decisions can be made and actions taken when the project's actual perform
ance deviates from the project plan.

• Software Project Planning—Establishes realistic plans for software devel
opment and managing the project.

• Requirements Management—Ensures that a common understanding of
the user's requirements is established and becomes an agreement and
basis for planning.

Level 3: Defined At Level 3, software engineering and management processes are
documented and standardized throughout the organization and become the organiza-
tion's standard process. And, a group is established to oversee the organization's soft-
ware processes and an organizationwide training program to support the standard
process is implemented. Thus, activities, roles, and responsibilities are well defined
and understood throughout the organization. The software process capability of this
level is characterized as being standard, consistent, stable, and repeatable. However,
this standard software process may be tailored to suit the individual characteristics or
needs of an individual project.

Key Process Areas

• Peer Reviews—Promotes the prevention and removal of software defects as
early as possible and is implemented through code inspections, structured
walkthroughs, and so forth.

• Intergroup Coordination—Allows for an interdisciplinary approach where
the software engineering group participates actively with other project
groups in order to produce a more effective and efficient software product.

• Software Product Engineering—Defines a consistent and effective set of
integrated software engineering activities and processes in order to produce
a software product that meets the users' requirements.

• Integrated Software Management—Supports the integration of software
engineering and management activities into a set of well-defined and
understood software processes that are tailored to the organization.

• Training Programs—Facilitates the development of individuals' skills and
knowledge so that they may perform their roles and duties more effectively
and efficiently.

• Organization Process Definition—Supports the identification and develop
ment of a usable set of software processes that improve the capability of
the organization across all software projects.

• Organization Process Focus—Establishes organizational responsibility for
implementing software processes that improve the organization's overall
software process capability.

Level 4: Managed At this level, quantitative metrics for measuring and assessing
productivity and quality are established for both software products and processes.
This information is collected and stored in an organizationwide repository that can be
used to analyze and evaluate software processes and products. Control over projects
is achieved by reducing the variability of project performance so that it falls within

240 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

acceptable control boundaries. The software processes of software organizations at
this level are characterized as being quantifiable and predictable because quantitative
controls are in place to determine whether the process performs within operational
limits. Moreover, these controls allow for predicting trends and identifying when
assignable causes occur that require immediate attention.

Key Process Areas

• Software Quality Management—Establishes a set of processes to support
the project's quality objectives and project quality management activities.

• Quantitative Process Management—Provides a set of quantitative or statis
tical control processes to manage and control the performance of the soft
ware project by identifying assignable cause variation.

Level 5: Optimizing At the highest level of software process maturity, the whole
organization is focused on continuous process improvement. These improvements
come about as a result of innovations using new technology and methods and incre-
mental process improvement. Moreover, the organization has the ability to identify its
areas of strengths and weaknesses. Innovations and best practices based on lessons
learned are identified and disseminated throughout the organization.

Key Process Areas

• Process Change Management—Supports the continual and incremental
improvement of the software processes used by the organization in order to
improve quality, increase productivity, and decrease the cycle time of soft
ware development.

• Technology Change Management—Supports the identification of new tech
nologies (i.e., processes, methods, tools, best practices) that would be bene
ficial to the organization and ensures that they are integrated effectively and
efficiently throughout the organization.

• Defect Prevention—Supports a proactive approach to identifying and pre
venting software defects.

As an organization's software process maturity increases, the difference between
expected results and actual results narrows. In addition, performance can be expected to
improve when maturity levels increase because costs and development time will
decrease, while quality and productivity increase.

According to the SEI, skipping maturity levels is counter-productive. If an organ-
ization was evaluated at Level 1, for example, and wanted to skip to Level 3 or Level 4,
it may be difficult because the CMM identifies levels through which an organization
must evolve in order to establish a culture and experiences.

Both the CMM and ISO 9001 series of standards focus on quality and process
improvement. A technical paper by Mark C. Paulk (1994) compares the similarities
and differences between the CMM and ISO 9001. His analysis indicates an ISO
9001-compliant organization would satisfy most of the Level 2 and Level 3 goals.
Although Level 1 organizations could be ISO 9001 compliant, it may be difficult for
these organizations to remain compliant. In turn, there are many practices in the CMM
that are not addressed by ISO 9001, and it is, therefore, possible for a Level 1 organiza-
tion to be ISO 9001 compliant. A Level 2 organization should have little difficulty in
receiving ISO 9001 certification.

After reading this section, you may be wondering which quality system is best.
Should an organization focus on ISO certification? Or, should it concentrate its
efforts on the CMM? Although the market may dictate a particular certification, an

THE IT PROJECT QUALITY PLAN 241

THE COST OF NOT FOLLOWING DIRECTIONS

Most IT groups have formal guidelines for developing soft-
ware. Unfortunately, these guidelines are in a thick binder
that ends up collecting dust or hidden in someone's desk
drawer. According to Software Productivity Research
(SPR), a regular inspection of the application design and
code can reduce software defects by 50 percent. The diffi-
cult part, however, is getting the development team to fol-
low step-by-step instructions for reviews, inspections, or
meetings with users. According to Roger Pressman, a soft-
ware consultant from Orange, Connecticut, many developers
view a process as an extraneous activity that one must
endure before getting to the cooler part of development
using a hot, new technology. But according to Pressman,
"the problem is that without a process, you get screwed up
just writing code." The problem becomes how to get devel-
opers to stick to the processes. One answer is to have them
help write it—because people are more likely to follow the

process if they are part of developing it. Therefore, the
project team should be invited to add to the process any
time they come up with a proven, effective technique. The
goal of developing a process is not to create binders filled
with paper that no one ever looks at, but to deliver projects
or software on time, within budget, and that meet or exceed
expectations. Although SPR has estimated that a company
can save $17 in maintenance costs for every $1 invested
up-front on requirements reviews, design and code inspec-
tions, and other development processes, the problem is that
most developers are rewarded for getting the project done
and not for following a process. As a result, developers get
the project done any way they can get it done fast.

SOURCE: Adapted from Julia King, Ignoring Development Guidelines
Raises Costs, Computerworld, MaylS, 1998,
http://www.computer-world.com/news/1998/story/0,11280,30906,00.
html.

organization should be focused on continuous improvement that leads to competitive
advantage and not necessarily on a certificate or maturity level (Paulk 1994).

THE IT PROJECT QUALITY PLAN

All project stakeholders want quality; unfortunately, there is no commonly accepted
approach for PQM so many project managers approach it differently (Lewis 2000).
Therefore, a basic framework will be introduced here to guide and integrate the knowl-
edge areas of quality planning, quality assurance, quality control, and quality improve-
ment. This framework provides a basic foundation for developing an IT project quality
plan to support the project's quality objectives. This plan may be formal or informal,
depending on the size of the project; however, the underlying philosophies, standards,
and methods for defining and achieving quality should be well-understood and com-
municated to all project stakeholders. Moreover, the project quality plan should support
the project organization, regardless of whether it is attempting to meet ISO or CMM
requirements or self-imposed quality initiatives and objectives.

PQM also becomes a strategy for risk management. The objectives of PQM are
achieved through a quality plan that outlines the goals, methods, standards, reviews,
and documentation to ensure that all steps have been taken to ensure customer satis-
faction by assuring them that a quality approach has been taken (Lewis 2000). Figure
10.8 provides a representation of the IT project quality plan discussed in this section.

Quality Philosophies and Principles

Before setting out to develop an IT project quality plan, the project and project organiza-
tion should define the direction and overall purpose for developing the project quality
plan. This purpose should be grounded upon the quality philosophies, teachings, and prin-
ciples that have evolved over the years. Although several different quality gurus and their

242 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

teachings were introduced in this chapter,
several common themes can provide the
backbone for any organization's plan for
ensuring quality of the project's processes
and product. These ideas include: a focus on
customer satisfaction, prevention of mistakes,
improving the process to improve the product,
making quality everyone's responsibility, and
fact-based management.

Focus on Customer Satisfaction Customer
satisfaction is the foundation of quality
philosophies and concepts. Customers have
expectations and are the best judge of
quality. Meeting or exceeding those
expectations can lead to improved customer
satisfaction. In addition, it is important to keep
in mind that customers may be either internal

or
external. The external customer is the ultimate customer—that is, the project sponsor
or client. However, internal customers are just as important and may be thought of as an
individual or group who are the receivers of some project deliverable or an output of a
process.

For example, project team members may be assigned the task of defining the
detailed user requirements for an application system. These requirements may be
handed off to one or several systems analysts who will develop the design models and
then hand these models off to the programmers. The quality of the requirements spec-
ifications, in terms of accuracy, completeness, and understandability, for example,
will have a direct bearing on the quality of the models developed by the systems ana-
lysts. In turn, the quality of the models will impact the quality of the programs devel-
oped. Therefore, we can view the series of project and software development
processes as a customer chain made up of both internal and external customers,

As you might expect, a chain is only as strong as its weakest link, and any quality
problems that occur can impact the quality of the project's product downstream. The pri-
mary focus of the project team should be to meet or exceed the expectations and needs of
their customer because the customer is the ultimate judge of quality (Ginac 1998).

Prevention not Inspection One of Deming's most salient ideas is that quality cannot
be inspected into a product. Quality is either built into the product or it is not. Therefore,
the total cost of quality is equal to the sum of four components—prevention,
inspection, internal failure, and external failure. The cost associated with prevention
consists of all the actions a project team may take to prevent defects, mistakes, bugs,
and so forth from occurring in the first place. The cost of inspection entails the costs
associated with measuring, evaluating, and auditing the project processes and
deliverables to ensure conformance to standards or requirement specifications. Costs
of internal failure can be attributed to rework or fixing a defective product before it is
delivered to the customer. These types of problems are, hopefully, found before the
product is released. External failure costs entail the costs to fix problems or defects dis-
covered after the product has been released. External failure costs can create the most
damage for an organization because the customer's views and attitudes toward the
organization may keep the customer from doing repeat business with the organization

THE IT PROJECT QUALITY PLAN 243

in the future. Thus, prevention is the least expensive cost and can reduce the likelihood
of a defect or bug reaching the customer undetected. In turn, this will reduce the cost
of developing the system and improve the overall quality of the product (Lewis 2000).

Improve the Process to Improve the Product Processes are needed to create all of the
project's deliverables and the final product—the information system.
Subsequently, improving the process will improve the quality of the product. Project
processes must be activities that add value to the overall customer chain. In addition,
processes can be broken down into subprocesses and must be repeatable and measur-
able so that they can be controlled and improved. Improving any process, however,
takes time because process improvement is often incremental.

Quality Is Everyone's Responsibility Quality improvement requires time and
resources. As many of the quality gurus point out, quality has to be more than just a
slogan. It requires a commitment from management and the people who will do the
work. Management must not only provide resources, but also remove organizational
barriers and provide leadership. On the other hand, those individuals who perform the
work usually know their job better than their managers. These people are often the
ones who have direct contact with the end customer. Therefore, they should be
responsible and empowered for ensuring quality and encouraged to take pride in their
work. Quality improvement may not be all that easy to achieve because it may require
an organization to change its culture and focus on long-term gains at the expense and
pressure to deliver short-term results.

Fact-Based Management It is also important that a quality program and project
quality plan be based on hard evidence. As Kloopenborg and Petrick (2002) point out,
managing by facts requires that the organization (1) capture data and analyze trends that
determine what is actually true about its process performance, (2) structure itself in such a
way that it is more responsive to all stakeholders, and (3) collect and analyze data and
trends that will provide a key foundation for evaluating and improving processes.

Quality Standards and Metrics

Standards provide the foundation for any quality plan; however, standards must be
meaningful and clearly defined in order to be relevant and useful. As illustrated in
Figure 10.9, the project's goal, defined in terms of the measurable organizational
value or MOV, provides the basis for defining the project's standards. The MOV
defines the project's ultimate goal in terms of the explicit value the project will bring to
the organization. In turn, the MOV provides a basis for defining and managing the
project's scope, which defines the high-level deliverables of the project as well as the
general features and functionality to be provided by the IT solution. However, the
scope of the project, in terms of the features and functionality of the information sys-
tem, are often defined in greater detail as part of the requirements definition.

As Figure 10.9 illustrates, the project's standards can be defined in terms of the
project's deliverables and, most importantly, by the IT solution to be delivered.
Once the features, functionality, or requirements are defined, the next step is to
identify specific quality attributes or dimensions associated with each project deliv-
erable. A customer-driven quality assurance plan first identifies each customer's
requirements, represents them as quality attributes or dimensions, and then translates
those dimensions into metrics (Ginac 1998). For example, Kan (1995) suggests
several dimensions that can serve as quality standards for the software product.
These include the application's features, reliability, usability, performance,

244 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

response, conformance, aesthetics, and maintainability.
Although these dimensions focus on the application system,
other dimensions can be identified for each of the project
deliverables (e.g., business case, project charter and baseline
project plan, project reporting, user documentation, etc.).

Metrics are vital for gauging quality by establishing
tolerance limits and identifying defects. A defect is an
undesirable behavior associated with the product or process
(Ginac 1998). It is a failure to comply with a requirement
(Lewis 2000). In software development, defects are often
referred to as bugs.1

Once the quality dimensions are identified, the next step is
to define a set of metrics that allow the project manager and
team to monitor each of the project standards. There are two
parts to a metric—the metric itself and an acceptable value or
range of values for that metric (Ginac 1998). Metrics should
focus on three categories (Kan 1995):

• Process—The control of defects
introduced by the
processes required to develop or create the project deliver
ables. Process metrics can be used to improve software
development or maintenance processes. Process metrics
should focus on the effectiveness of identifying and
removing defects or bugs.

• Product—The intrinsic
quality of the deliverables
and the satisfaction of the customer with these deliverables. These metrics
should attempt to describe the characteristics of the project's deliverables
and final product. Examples of product metrics may focus on customer sat
isfaction, performance, reliability, and design features.

• Project—The control of the project management processes to ensure that the
project meets its overall goal as well as its scope, schedule, and budget.

Metrics can be used to determine whether the software product and project deliv-
erables meet requirements for "fitness for use" and "conformance to requirements" as
defined by the internal or external customers. Many technical people, however, often
feel that standards are restricting and only serve to stifle creativity. Although too many
standards that are rigidly followed can lend support to that argument, well-defined
standards and procedures are necessary for ensuring quality. A quality approach can
also decrease development costs because the sooner a defect or bug is found and cor-
rected, the less costly it will be down the road (Lewis 2000). Table 10.3 provides a
summary of some common process, product, and project metrics.

1 The term bug was introduced to the computer field by Dr. Grace Murray Hopper (1906—1992)—an
extraordinary woman who retired as a Rear Admiral in the U. S. Navy. In 1946, while working on the Mark II and
Mark III computers, she found that one of the computers crashed as a result of a moth that had became trapped in
one of the computer's relays. The moth was carefully removed and taped to the logbook where an inscription
was made that the computer was debugged. For some reason the term stuck, and errors, or glitches, in a program
or computer system are called bugs.

THE IT PROJECT QUALITY PLAN 245

Table 10.3 Examples of Process, Product, and Project Metrics

Type Metric Description

Process Defect arrival rate
Defects by phase
Defect backlog
Fix response time
Defective fixes

The number of defects found over a specific period of time
The number of defects found during each phase of the project
The number of defects waiting to be fixed The average time it
takes to fix a defect The number of fixes that created new
defects

Product Mean time to failure
Defect density
Customer found defects
Customer satisfaction

Average or mean time elapsed until a product fails
The number of defects per lines of code (LOG) or function points
The number of defects found by the customer
An index to measure customer satisfaction—e.g., scale from 1 (very
unsatisfied) to 5 (very satisfied)

Project Scope change requests
Scope change approvals
Overdue tasks

Tasks that should have started
Over budgeted tasks

Earned value
Over allocated resources
Turnover
Training hours

The number of scope changes requested by the client or sponsor
The number of scope changes that were approved
The number of tasks that were started but not finished by the expected
date or time
The number of tasks that should have started but have been delayed
The number of tasks (and dollar amount) of tasks that have cost more to
complete than expected
Budgeted Cost of Work Performed (BCWP)
The number of resources assigned to more than one task
The number of project team members who quit or terminated
The number of training hours per project team member

Verification and Validation

Verification and validation (V&V) are becoming increasingly important concepts in
software engineering (Jarvis and Crandall 1997). V&V activities continually prompt
us to ask whether we will deliver an IT solution that meets or exceeds our project
sponsor's expectations.

The concept of verification emerged about twenty years ago in the aerospace
industry, where it is important that software perform all of its intended functions cor-
rectly and reliably because any error in a software program could result in an expen-
sive or disastrous mission failure (Lewis 2000). Verification focuses on the
process-related activities of the project to ensure that the product or deliverable meets
its specified requirements before final testing of the system begins.

Verification requires that the standards and metrics be defined clearly. Moreover,
verification activities focus on asking the question of whether we followed the right
procedures and processes. In general, verification includes three types of reviews
(Ginac 1998):

• Technical Reviews—A technical review ensures that the IT solution will con-
form to the specified requirements. This review may include conformance to
graphical user interface (GUI) standards, programming and documentation
standards, naming conventions, and so forth. Two common approaches to
technical reviews include structured walkthroughs and inspections. A walk-
through is a review process in which the programmer or designer leads a
group of programmers or designers through a program or technical design.

246 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

Table 10.4 Testing Approaches

The participants may ask questions, make comments, or point out errors or
violations of standards (Ginac 1998). Similarly, inspections are peer reviews
in which the key feature is the use of a checklist to help identify errors. The
checklists are updated after data is collected and may suggest that certain
types of errors are occurring more or less frequently than in the past (Lewis
2000). Although walkthroughs and inspections have generally focused on the
development of programs, they can be used as a verification of all project
deliverables throughout the project life cycle.

Business Reviews—A business review is designed to ensure that the IT
solution provides the required functionality specified in the project scope and
requirements definition. However, business reviews can include all project
deliverables to ensure that each deliverable (1) is complete, (2) provides the
necessary information required for the next phase or process, (3) meets
predefined standards, and (4) conforms to the project methodology.

Management Reviews—A management review basically compares the pro-
ject's actual progress against the baseline project plan. In general, the project
manager is responsible for presenting the project's progress to provide a clear
idea of the project's current status. Issues may need to be resolved, resources
adjusted, or decisions made to either stay or alter the project's course. In
addition, management may review the project to determine if it meets the
scope, schedule, budget, and quality objectives.

Validation, on the other hand, is a
product-oriented activity that attempts
to determine if the system or project

deliverable meets the customer or client's
expectations and ensures that the system
performs as specified. Unlike verification,
validation activities occur toward the end of
the project or after the information system
has been developed. Therefore, testing
makes up the majority of validation activities.
Table 10.4 provides a summary of the various
types of tests that can be conducted for a
software engineering project. Volumes and
courses can be devoted to software testing, so
just an overview (or refresher) can be
provided in this text. However, understanding
what needs to be tested and how is an
important consideration for developing a
quality strategy and plan for the IT project.

Testing provides a basis for ensuring
that the system functions as intended and
has all the capabilities and features that were
defined in project's scope and requirements.
In addition, testing provides a formal,
structured, and traceable process that gives
management and the project

Test Description

Unit testing Unit testing is done at the module, program, or object
level and focuses on whether specific functions work
properly. Unit testing can be accomplished via:
• Black box testing—Tests the program code against

specified requirements (i.e., functionality)
• White box testing—Examines paths of logic inside

the program (i.e., structure)
• Gray box testing—Study the requirements and

communicate with the developer to understand
internal structure of the program (i.e., functionality
and structure)

Integration Tests whether a set of logically related units (e.g.,
testing functions, modules, programs, objects, etc.) work

together properly after unit testing is complete
Systems The system is tested as a whole in an operating
testing environment to verify functionality and fitness for

use. May include tests to verify usability,
performance, stress, compatibility, and
documentation

Acceptance To certify that the system satisfies the end customer's
testing scope and detailed requirement specifications after

systems testing is complete. The end user or client is
responsible for assuring that all specified
functionality is included and will provide value to the
organization as defined by the project's goal or MOV.

THE IT PROJECT QUALITY PLAN 247

sponsor confidence in the quality of the system (Lewis 2000). In addition, Lewis
(2000) provides several suggestions for making software testing more effective:

• Testing should be conducted by someone who does not have a personal stake
in the project. In other words, programmers should not test their own pro
grams because it is difficult for people to be objective about their own work.

• Testing should be continuous and conducted throughout all the develop
ment phases.

• In order to determine whether the test met its objectives correctly, a test
plan should outline what is to be tested, how it will be tested, when it will
be tested, who will do the testing, and the expected results.

• A test plan should act as a service level agreement among the various proj
ect stakeholders and should encourage "quality before design and coding."

• A key to testing is having the right attitude. Testers should not be out to
"break the code" or embarrass a project team member. A tester should eval
uate a software product with the intent of helping the developers meet the
customer's requirements and make the product even better.

Change Control and Configuration Management

Suppose you were developing a database application system for a client. After several
weeks, you would undoubtedly make a number changes to the tables, attributes, user
interface, and reports as part of a natural evolution of the project. This evolution is
both normal and expected as you learn more about the technology and the require-
ments. In addition, the user/client may suggest changes or enhancements if the orga-
nizational environment changes.

If you are working alone, you may store all the products of the software develop-
ment (i.e., reports, plans, design models, program and database files) on your computer.
Change control may be nothing more than just keeping your documents and files organ-
ized. If, however, you need to share these files and documents with even one other per-
son, controlling these changes becomes more problematic. You could all keep the files
and documents being worked on at everyone's stand-alone workstation. Unfortunately,
if you need to share or work on the same documents or files, this sharing can lead to
several different versions of the same document or file distributed among several differ-
ent computers. On the other hand, you may store all the work in a shared directory on a
server. This solution would certainly allow everyone to share and use the same docu-
ments or files, but problems could occur if two or more people work on the same doc-
ument or file at the same time. The changes one makes would be lost if someone else
were to save a file after the first person saved it, thus replacing new file with a different
new file. There could be a great deal of confusion and wasted time.

Change is inevitable throughout the life of the project. On any given project, each
deliverable will progress through a series of stages from an initial conception through a
final release. As the deliverable develops, changes will be made informally until it gets
to a state of completeness, whereupon revision control is needed. At some point
informal changes should be no longer permitted. After final acceptance, the deliver-
able should be frozen until it is released. An informal change control allows changes
that can be traced and captured sequentially to be made to an evolving project deliv-
erable. It provides for rapid development while allowing for backup and some meas-
ures of control. On the other hand, formal change control is a procedure in which
changes to an accepted work are formally proposed and assessed and decisions to
accept or reject proposed changes are documented to provide an element of stability
beyond the informal change controls.

248 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

Configuration management is an important aspect of PQM that helps control and
manage document and software product change (Jarvis and Crandall 1997). It provides
the project team with an environment for efficiently accessing different versions of past
documents or files. Its basic purpose is to establish and maintain the integrity of the
various project work products and deliverables throughout the project life cycle. In
short, configuration management attempts to answer the following basic questions
(Ginac 1998):

• What changes were made?

• Who made the changes?

• When were the changes made?

• Why were the changes made?

Configuration management tools allow different project team members to work
on a specific section of a document or file. The document or file can be checked out
and checked back into a repository or library in order to maintain control. Software
and the supporting project deliverables often go through an evolution of successive
temporary states called versions (Lewis 2000). Configuration management, therefore,
includes a set of processes and tools that allows the project team to manage its various
documents and files as various configurations of IT solutions and project deliverables
are derived. It may include specifying and enforcing various policies that restrict
access to specific individuals or preventing two people from changing the same
document or file at the same time (Ginac 1998).

According to Lewis (2000), software configuration management includes four
elements—component identification, version control, configuration building, and
change control.

Component Identification This first element focuses on the processes or activities
for defining or describing the various software configuration items or work products
that make up a specific project deliverable. Guidelines are established and followed
for identifying and naming the various baselines, software components, and
configurations. As these elements go through changes, a numbering and/or naming
scheme is used to uniquely identify each of the various versions or revisions as they
evolve and change over time. The various components are often stored in a library or
repository, where a list of all the components can be cataloged.

Version Control As the project deliverables and work products evolve and change
over time, many different versions are created. Errors may be corrected and enhance-
ments are made until the work product becomes stable. Each evolutionary change
results in a new version. It is essential that these components be organized so that dif-
ferent versions can be distinguished from one another. With the exception of the first
version, each subsequent version will have a predecessor and the ability to trace each
version becomes the component's history. Allowing the project team to go back to any
single version provides an important backup and allows for specific ideas to be saved
and made available for reuse later on.

Configuration Building Configuration building entails identifying the correct
component versions and then being able to execute the build procedures. A build
includes all the software components, such as data files, programs, and so forth that
are needed to implement one or more software functions (Pressman 2001). A software
product must be built in order for it to run. For example, if you have a single program,

THE IT PROJECT QUALITY PLAN 249

building the application may require compiling and linking the program file in order
to create an executable program. However, a larger application system may require
hundreds or even thousands of files to be compiled, linked, and combined to create an
executable system. This process can become time-consuming and complicated
(McConnell 1996). Therefore, configuration building ensures that the derived soft-
ware components are correctly associated and put together with each other in order to
create an accurate build.

Change Control Once a software component becomes stable and accepted, a
decision process must be in place to control any proposed changes. Moreover, a
simple change will often involve several other components, so it is important that
the impact of any change requests be assessed. The change control activities ensure
that any modification to a software component is proposed, evaluated, approved or
rejected, scheduled, and tracked. It provides the basis for reporting and auditing
processes. If a change is made, the component should be checked back into the
library or repository where it becomes a new component version and the previous
version is retained.

Monitor and Control

Quality control focuses on monitoring the activities and results of the project to ensure
that the project complies with the quality standards. Once the project's standards are in
place, it is important to monitor them to ensure that the project quality objective is
achieved. Moreover, control is essential for identifying problems in order to take cor-
rective action and also to make improvements once a process is under control.

Similar to the quality assurance activities, quality control should be ongoing
throughout the life cycle of the project and only end when the customer or project
sponsor accepts the final IT solution (Kloppenborg and Petrick 2002). Moreover,
quality control includes monitoring and controlling activities concerning the prod-
uct, processes, and project. Using the system concept as illustrated in Figure 10.10,
quality control activities must focus on the inputs and outputs of each process. If
inputs to a process are of poor quality, then the output of a particular process will be
of poor quality as well because, in general, the process may not be capable of
changing the inherent quality of the input. Moreover, even if the input to a process is
of high quality, the process itself may create an output of lower quality. Finally, the
input and process may not produce a quality output or product if the requirements
are not properly defined.

To support the quality control activities, several tools and techniques were intro-
duced in this chapter. Figure 10.11 provides a summary of
those tools. As Besterfield, et al (1999) point out, these
tools can be used to monitor the process, product, and
product metrics in order to:

Learn, Mature, and Improve

A central theme of this text has been the application of
knowledge management as a tool for team learning and
identifying best practices. Monitoring and controlling
activities and tools can help point out problem areas, but
the project team must solve these problems. Therefore, it is

important that the lessons Figure 10.10 Quality Control Activities

250 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

Cause and effect diagram Control chart

Figure 10.11 Quality Control Tools

learned from a project team's experiences
be documented so that best practices be
identified and disseminated to other project
teams. Continual, incremental improve-
ments can make a process more efficient,
effective, stable, mature, and adaptable
(Besterfield, Besterfield-Michna et al.
1999). A project quality plan should be
more than an attempt to build a better IT
solution, it should also support the organiza-
tion in searching for ways to build a better
product (Woodall, Rebuck et al. 1997).

CHAPTER SUMMARY

Project quality management (PQM) is a knowledge area interchangeable parts, quality was controlled by guilds
defined by the Project Management Body of that regulated membership, pricing, and trade in a par-
Knowledge. It is defined as: ticular town. With Eli Whitney's concept of mass pro-
the processes to ensure that the project will sat- ducing interchangeable parts as part of a manufactory,
isfy the needs for which it was undertaken. It the seed for the modern assembly line was born,
includes all activities of the overall manage- Instead of training people to perform skilled work,
ment function that determine the quality policy, they could instead be trained to operate machines to do
objectives, and responsibility and implements the work, as long as the parts produced by the

them by means of quality planning, quality machines remained within certain tolerances,
assurance, quality control, and quality The scientific method put forth by F.W Taylor

improvement, within the quality system. attempted to define the best way for workers to perform
In this text, PQM has been expanded to include not only tasks—allowing them to produce at their full potential

the quality management concepts, but also verification whlle removing management's proclivity to set arbitrary
and validation activities and change control to manage production rates. Although the scientific method had the

the various configurations of the project products best of intentions, many managers used it as a way to
throughout the project life cycle. sPeed UP workers and increase profits. The work of

Although quality can mean different things to dif- Walter A' Shewhart and W. Edwards Deming attempted
ferent people, quality in organizational settings has to change management's mindset by advocating leader-

been traditionally defined as "fitness for use" and ship, prevention over inspection, and statistical control to
"conformance to requirements." Before the focus on improve productivity and quality. Because Japan faced

CHAPTER SUMMARY 251

 the daunting task of rebuilding its economy after World
War II with few natural resources and a reputation for
inferior goods, a group called the Union of Japanese
Scientists and Engineers (JUSE) was formed with the
help of Japan's allies to help transform the nation. As
part of this effort, Deming and Joseph Juran were invited
to give lectures on statistical quality control. Japanese
managers embraced these principles and ideas, and the
quality movement was officially bora. Many others, such
as Kaoru Ishikawa and Philip Crosby, contributed to this
worldwide movement, and proprietary and
nonpropri-etary quality management systems have
gained increasing popularity in many organizations.

As part of the quality movement, standards in the
form of documented agreements, protocols, or rules that
outline specific criteria for quality became the backbone
for ensuring quality. Several organizations and quality
initiatives have gained fame over the years. ISO, proba-
bly the most widely known standards organization, was
formed in 1947 with the intention of creating and coor-
dinating a set of international standards. While the ISO
14000 focus on environmental management, the ISO
9000 focus on eight quality management principles that
provide a framework for different organizations. A third
party, called a registrar, can audit an organization and
issue a certification that the organization's processes
conform to the ISO standards.

Other quality initiatives, such as Six Sigma, focus
on variations in processes that may translate into prod-
ucts or services that do not meet customer needs and
expectations. By improving the quality of its
processes, an organization can achieve its Six Sigma
goal of only producing 3.4 defects per million. More
recently, the Software Engineering Institute at
Carnegie Mellon University introduced the Capability
Maturity Model (CMM) that provides a set of recom-
mended practices for a set of key process areas specific
to software development. The CMM also provides a
path of five levels to help organizations determine
their current maturity level and then take steps toward
software engineering and management excellence.
Although the competitive environment may dictate
that an organization achieve or hold a particular certifi-
cate or level of maturity, an organization should be
focused on continuous improvement. Continuous
improvement leads to competitive advantage by incor-
porating the lessons learned from their experiences and
then translating those experiences into best practices
that can be repeated throughout the organization.

The concepts, tools, methods, and philosophies of the
quality movement provide a foundation for developing the

IT project quality plan. The plan should be based on the
following:
• Quality Philosophies and Principles—To guide the

plan's objective and mission.
• Quality Standards and Metrics—To define the

quality objectives and expectations and to provide a
baseline for benchmarking improvements.

• Validation and Verification Activities—To ensure a
quality approach throughout the project.
Verification activities, such as technical, business,
and management reviews, determine whether the
project team is building the system or producing
project deliverables according to specified stan
dards or requirements; validation activities, such as
software testing, tend to focus on whether the pro
ject's products will meet customer expectations.

• Change Control and Configuration Management—
To support the natural evolution of the project's
products. As these products evolve, change is
inevitable. It is important that this change is man
aged effectively in order to reduce confusion and
wasted effort. It includes a document repository
library where files or documents can be checked out
and checked in as needed. This process allows for
versioning, backup, and safeguarding so that docu
ments or files are not accidentally replaced by other
project team members. Configuration building also
allows for identifying the correct component ver
sions needed to execute build procedures.
Configuration management also provides formal
change control to ensure that changes to accepted
work are formally proposed and assessed and any
decisions to make the changes are documented.

• Monitor and Control—To focus on monitoring the
project activities to ensure that the project meets its
quality standards. Once the project work begins, it
is important that these activities be monitored and
assessed so that appropriate corrective action can be
taken when necessary. Quality control tools and
techniques can be used to monitor each project or
software development process and the inputs and
outputs of the process, as well.

• Learn, Mature, and Improve—To focus on continu
ous quality improvement. As a project progresses,
lessons learned can be documented from the project
team's experiences. Recommendations, issues, chal
lenges, and opportunities can be identified and shared
with other project teams; and many of these experi
ences can provide the basis for best practices that can
be implemented throughout the organization.

252 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT

WEB SITES TO VISIT

Quality Gurus
http: //w w w.j uran.com/
http://www.deming.org/
http://www.philipcrosby.com/

UCITA
http://www.infoworld.com/ucita/

ISO
http://www.iso.ch/iso/en/ISOOnline.frontpage
Software Engineering Institute/ CMM
http://www.sei.cmu.edu/ Configuration

Management http://www.cmtoday.com/

REVIEW QUESTIONS

1. Define quality in your own words. How would you
define quality in a word processing, spreadsheet, or
presentation software package?

2. Why is the number of features of a software system
not necessarily the best measure of that system's
quality?

3. How does "conformance to requirements" or "fit
ness for use" provide a definition of quality for an
information system or software product?

4. What is PQM?
5. Define the following: (a) Quality Planning; (b)

Quality Assurance; (c) Quality Control
6. Why should quality management include both the

products and processes of a project?
7. What is scientific management? Why was it so pop

ular? Why was it so controversial?
8. What is a control chart? When is a process said to

be in statistical control? How would you know if it
was not?

9. Why did the teachings of Deming and Juran have
such an important impact on Japan just after World
War II?

10. What is an Ishikawa diagram? How can it be used
as a quality control tool for an IT project?

11. What is a Pareto diagram? How can it be used as a
quality control tool for an IT project?

12. What is a flow chart? How can it be used as a qual
ity control tool for an IT project?

13. What is a standard? What role do standards play in
developing an information system?

14. What is ISO? Why would an organization wish to
be ISO certified?

15. What is the difference between ISO 9000 and ISO
14000?

16. Can an organization be ISO compliant but not cer
tified?

17. What is TickIT?

18. Briefly describe Six Sigma and its objectives.
19. How does achieving a Six Sigma objective improve

quality?
20. What is process capability?
21. What is process maturity?
22. Describe an immature software organization.
23. Describe a mature software organization.
24. What is the relationship between standards and

metrics?

25. What is a process metric? Give an example.

26. What is a product metric? Give an example.
27. What is a project metric? Give an example.
28. What is a defect? Give an example of a software

defect.

29. Describe verification. What activities support veri
fication?

30. Describe validation. What activities support vali
dation?

31. Describe how technical, management, and business
reviews are different.

32. What is the purpose of change control?
33. Why should some changes be allowed to be made

informally, while other changes should be made
formally?

34. What is configuration management? How does it
support change control?

35. What role does knowledge management play in
continuous quality improvement?

BIBLIOGRAPHY 253

EXTEND YOUR KNOWLEDGE

1. Interview two or three people who regularly use an
application software package. Examples of an appli
cation software package include an Internet browser,
electronic spreadsheet package, or a word processing
package. Summarize each interview in one or two
pages based upon the following questions:
a. What application software package do you use

the most?
b. How often do you use this particular software

package?
c. Which features or functions do use the most?

The least?

d. How would you rate the overall quality of the
software package on a scale from one to ten,
where one indicates very low quality and ten
indicates very high quality?

e. Why did you give the software package this score?
f. In your opinion, what are the three most important

attributes of a high quality software package?

2. Contact someone in an organization who is willing
to talk to you about her experiences implementing a
quality program such as Six Sigma, ISO, Ticklt, or
the CMM. If this is not feasible, use the Internet or
library to find an article. Prepare a short report that
answers the following:

a. What were the compelling reasons for initiating
a quality program?

b. What was the biggest challenge that the organi
zation faced when trying to implement the qual
ity program?

c. How long did it take to implement the program?
Or how far along are they?

d. What lessons did the organization learn from its
experience?

3. You and two other students have been hired by a local
swim team to develop a Web site that will provide
information about the team. The information on the
Web site will be used to recruit new swimmers and
will provide information to current members about
upcoming meets and practices. In addition, team and
individual statistics will be posted after each swim
meet. Before you begin, you need to develop a quality
plan. The plan should include:

a. Your own quality philosophy.

b. Two metrics for ensuring that reliability stan
dards are met.

c. Two metrics for ensuring that performance stan
dards are met.

d. A means for validating and verifying that your
client's needs and expectations will be met.

BIBLIOGRAPHY

Besterfield, D. H., C. Besterfield-Michna, et al. 1999. Total Quality
Management. Upper Saddle River, N.J.: Prentice Hall. Boehm, B.

W. 1981. Software Engineering Economics. Englewood
Cliffs, N.J.: Prentice Hall. Caputo, K. 1998. CMM

Implementation Guide: Choreographing
Software Process Development. Reading, Mass.: Addison-Wesley.

Deming, W. E. 1982. Out of the Crisis. Cambridge, Mass.: The MIT
Press. Florae, W. A., R. E. T. Park, et al. 1997. Practical

Software
Measurement: Measuring for Process Management and
Improvement. Pittsburgh, Pa.: Software Engineering Institute.

Ginac, F. P. 1998. Customer Oriented Software Quality Assurance.
Upper Saddle River, N.J.: Prentice Hall. Humphrey, W. 1988.

Characterizing the Software Process: A Maturity
Framework. IEEE Software 5(3): 73-79. Jarvis, A. and V.

Crandall. 1997. Inroads to Software Quality: How to
Guide and Toolkit. Upper Saddle River, N.J.: Prentice Hall PTR.

Kan, S. H. 1995. Metrics and Models in Software Quality
Engineering. Boston, MA: Addison-Wesley.

Kloppenborg, T. J. and J. A. Petrick. 2002. Managing Project Quality.
Vienna, VA: Management Concepts. Lewis, W. E. 2000.

Software Testing and Continuous Quality
Improvement. Boca Raton, FL: Auerbach. McConnell, S. 1996.

Rapid Development: Taming Wild Software
Schedules. Redmond, WA: Microsoft Press. Paulk, M. C. 1994. A

Comparison of ISO 9001 and the Capability
Maturity Model for Software. Software Engineering Institute
CMU/SEI-94-TR-12. Paulk, M. C., B. Curtis, et al. 1993. The

Capability Maturity Model for
Software. IEEE Software 10(4): 18-27. Pressman, R. S. 2001.

Software Engineering: A Practitioner's
Approach. Boston, MA, McGraw-Hill. Pyzdek, T. 1999. The

Complete Guide to Six Sigma. Quality
Publishing.

Siviy, J. 2001. Six Sigma. The Software Engineering Institute (SEI).
Williamson, M. 1997. Quality Pays. Computerworld (August 18).
Woodall, J., D. K. Rebuck, et al. 1997. Total Quality in Information

Systems and Technology. Delray Beach, FL: St. Lucie Press.

